1,266,076 research outputs found

    New transformation of Wigner operator in phase space quantum mechanics for the two-mode entangled case

    Full text link
    As a natural extension of Fan's paper (arXiv: 0903.1769vl [quant-ph]) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation we find new two-fold complex integration transformation about the Wigner operator (in its entangled form) in phase space quantum mechanics and its inverse transformation. In this way, some operator ordering problems can be solved and the contents of phase space quantum mechanics can be enriched.Comment: 8 pages, 0 figure

    From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality

    Full text link
    By means of Dirac procedure, we re-examine Yang's quantized space-time model, its relation to Snyder's model, the de Sitter special relativity and their UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a complete Yang model at both classical and quantum level can be presented and there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge

    Wigner functions of thermo number state, photon subtracted and added thermo vacuum state at finite temperature

    Full text link
    Based on Takahashi-Umezawa thermo field dynamics and the order-invariance of Weyl ordered operators under similar transformations, we present a new approach to deriving the exact Wigner functions of thermo number state, photon subtracted and added thermo vacuum state. We find that these Wigner functions are related to the Gaussian-Laguerre type functions of temperature, whose statistical properties are then analysed.Comment: 10 pages and 2 figure

    Ab initio approach to s-shell hypernuclei 3H_Lambda, 4H_Lambda, 4He_Lambda and 5He_Lambda with a Lambda N-Sigma N interaction

    Full text link
    Variational calculations for s-shell hypernuclei are performed by explicitly including Σ\Sigma degrees of freedom. Four sets of YN interactions (SC97d(S), SC97e(S), SC97f(S) and SC89(S)) are used. The bound-state solution of Λ5_\Lambda^5He is obtained and a large energy expectation value of the tensor ΛNΣN\Lambda N-\Sigma N transition part is found. The internal energy of the 4^4He subsystem is strongly affected by the presence of a Λ\Lambda particle with the strong tensor ΛNΣN\Lambda N-\Sigma N transition potential.Comment: Phys. Rev. Lett. 89, 142504 (2002

    Chiral Symmetry and Electron-Electron Interaction in Many-Body Gap Formation in Graphene

    Full text link
    We study a many-body ground state of graphene in perpendicular magnetic fields. Chiral symmetry in graphene enables us to determine the many-body ground state, which turns out to be a doubly degenerate chiral condensate for the half-filled (undoped) case. In the ground state a prominent charge accumulation emerges along zigzag edges. We also show that gapless excitations are absent despite the presence of the robust edge modes, which is consistent with the Chern number C = 0.Comment: 4 pages, 3 figures, proceeding of 26th International Conference on Low Temperature Physics (LT26

    Environmental Dependence of Cold Dark Matter Halo Formation

    Full text link
    We use a high-resolution NN-body simulation to study how the formation of cold dark matter (CDM) halos is affected by their environments, and how such environmental effects produce the age-dependence of halo clustering observed in recent NN-body simulations. We estimate, for each halo selected at redshift z=0z=0, an `initial' mass MiM_{\rm i} defined to be the mass enclosed by the largest sphere which contains the initial barycenter of the halo particles and within which the mean linear density is equal to the critical value for spherical collapse at z=0z=0. For halos of a given final mass, MhM_{\rm h}, the ratio Mi/MhM_{\rm i}/M_{\rm h} has large scatter, and the scatter is larger for halos of lower final masses. Halos that form earlier on average have larger Mi/MhM_{\rm i}/M_{\rm h}, and so correspond to higher peaks in the initial density field than their final masses imply. Old halos are more strongly clustered than younger ones of the same mass because their initial masses are larger. The age-dependence of clustering for low-mass halos is entirely due to the difference in the initial/final mass ratio. Low-mass old halos are almost always located in the vicinity of big structures, and their old ages are largely due to the fact that their mass accretions are suppressed by the hot environments produced by the tidal fields of the larger structure. The age-dependence of clustering is weaker for more massive halos because the heating by large-scale tidal fields is less important.Comment: 18 pages,19 figures, accepted by MNRA
    corecore